The Time at Which a Lévy Process Creeps
نویسندگان
چکیده
We show that if a Lévy process creeps then, as a function of u, the renewal function V (t, u) of the bivariate ascending ladder process (L−1,H) is absolutely continuous on [0,∞) and left differentiable on (0,∞), and the left derivative at u is proportional to the (improper) distribution function of the time at which the process creeps over level u, where the constant of proportionality is d H , the reciprocal of the (positive) drift of H. This yields the (missing) term due to creeping in the recent quintuple law of Doney and Kyprianou (2006). As an application, we derive a Laplace transform identity which generalises the second factorization identity. We also relate Doney and Kyprianou’s extension of Vigon’s équation amicale inversée to creeping. Some results concerning the ladder process of X, including the second factorization identity, continue to hold for a general bivariate subordinator, and are given in this generality.
منابع مشابه
On Lévy Processes Conditioned to Stay Positive
We construct the law of Lévy processes conditioned to stay positive under general hypotheses. We obtain a Williams type path decomposition at the minimum of these processes. This result is then applied to prove the weak convergence of the law of Lévy processes conditioned to stay positive as their initial state tends to 0. We describe an absolute continuity relationship between the limit law an...
متن کاملEstimation of the characteristics of a Lévy process observed at arbitrary frequency
A Lévy process is observed at time points of distance ∆ until time T . We construct an estimator of the Lévy-Khinchine characteristics of the process and derive optimal rates of convergence simultaneously in T and ∆. Thereby, we encompass the usual lowand high-frequency assumptions and obtain also asymptotics in the mid-frequency regime.
متن کاملA Note on Scale Functions and the Time Value of Ruin for Lévy Insurance Risk Processes
We examine discounted penalties at ruin for surplus dynamics driven by a general spectrally negative Lévy process; the natural class of stochastic processes which contains many examples of risk processes which have already been considered in the existing literature. Following from the important contributions of Zhou (2005) we provide an explicit characterization of a generalized version of the ...
متن کاملParisian Ruin Probability for Spectrally Negative Lévy Processes
In this note we give, for a spectrally negative Lévy process, a compact formula for the Parisian ruin probability, which is defined by the probability that the process exhibits an excursion below zero which length exceeds a certain fixed period r. The formula involves only the scale function of the spectrally negative Lévy process and the distribution of the process at time r.
متن کاملPenalising symmetric stable Lévy paths
Limit theorems for the normalized laws with respect to two kinds of weight functionals are studied for any symmetric stable Lévy process of index 1 < α ≤ 2. The first kind is a function of the local time at the origin, and the second kind is the exponential of an occupation time integral. Special emphasis is put on the role played by a stable Lévy counterpart of the universal σ-finite measure, ...
متن کامل